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A number of studies have reported an association between smoking and depression, and several reports
suggest that nicotine (NIC) may act as an antidepressant. The present study was designed to determine
whether the effects of NIC on sleep–wake patterns in rats are similar to those of the antidepressant
fluoxetine (FLX), a selective serotonin reuptake inhibitor. Male rats were chronically implanted with a
standard set of electrodes for sleep recording. We compared the effects of antidepressive doses of NIC, FLX
and the combination of both drugs on sleep–wake pattern in rats subjected to one day, one week and two
weeks of administration, as well as after the withdrawal of the two-week treatment. The changes observed
in our study in an 8-h sleep recording period during one day, one week and two weeks of NIC administration
are very similar to those observed in the rats that received FLX, which led to a decrease in both slow wave
sleep II and rapid eye movement (REM) sleep as a consequence of an increase in wakefulness. In addition, all
treatments also induced a significant lengthening of REM sleep latency onset. These data suggest that the
antidepressant-like action of NIC could be caused by its arousing properties.
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1. Introduction

Both preclinical and clinical studies have suggested that nicotine
(NIC) and related compoundsmay have therapeutic value for treating a
wide range of neuropsychiatric disorders (Vazquez-Palacios and
Bonilla-Jaime, 2004; Newhouse et al., 2004; Romanelli et al., 2007).
Converging lines of evidence indicate a strong relationship between
major depression, neuronal acetylcholine nicotinic receptors (nAChRs)
and NIC (for review: see Bertrand, 2005; Quattrocki et al., 2000;
Vazquez-Palacios and Bonilla-Jaime, 2004). Thedirect link betweenNIC
and depression is suggested primarily by the fact that transdermal NIC
patch treatment has improved mood in non-smoking depressed
patients (Salin-Pascual et al., 1996). In addition, a growing number of
findings in animal models of depression have recently shown that NIC
and some nicotinic ligands also have antidepressant properties
(Buckley et al., 2004; Ferguson et al., 2000; Semba et al., 1998;
Nakamura and Tanaka, 2001; Tizabi et al., 1999; Vazquez-Palacios et al.,
2004, 2005). It has been shown that most antidepressant drugs are
associated with changes in sleep architecture, notably the delayed
onset of rapid eye movement (REM) sleep and a reduced amount of
REM sleep (Wilson and Argyropoulos, 2005). Because the majority of
antidepressants, irrespective of their chemical classes, suppress REM
sleep, it has been hypothesized that the improvement in symptoms of
depression is related to sleep deprivation, especially the deprivation of
REM sleep (Vogel et al., 1990; Thase, 1998; Giedke and Schwärzler,
2002; Berger et al., 2003). For instance, the effects on sleep offluoxetine
(FLX), a potent selective serotonin reuptake inhibitor (SSRI), have been
studied extensively in both normal volunteers and depressed patients.
Insomnia and other “activating” side effects occur in depressed patients
treated with FLX (Beasley et al., 1992; Armitage and Sussman, 1997).
This effective antidepressant medication is a potent suppressor of REM
sleep (Kerkhofs et al., 1990; Gillin et al., 1997; Nicholson and Pascoe,
1988; Vasar et al., 1994). A similar result has been observed in animals
(Pastel and Fernstrom, 1987; Bakalian and Fernstrom, 1990; Gao et al.,
1992). Changes in sleep and, especially, REM sleep, in depressive
patients have been attributed to an increased ratio of cholinergic to
aminergic neurotransmission in critical central synapses (see Adrien,
2002). Given that these neurotransmitter systems are primarily
involved in regulating sleep and wakefulness, it is believed that they
represent common neurobiological substrates that underlie the
impairment of the regulation of both mood and the sleep–wakefulness
cycle (Adrien, 2002).
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However, there is also contradictory evidence as to the role of NIC
in sleep regulation, as early reports failed to detect any effect of NIC on
sleep (George et al., 1964). In contrast, when administered intrave-
nously (Domino and Yamamoto, 1965), subcutaneously (Jewet and
Norton, 1966), or into the medial pontine reticular formation
(Velazquez-Moctezuma et al., 1990), NIC actually increased REM
sleep in cats. Similarly, research conducted with humans has yielded
inconsistent results. Several studies have shown that transdermal NIC
induced a decrease in total sleep time, sleep efficiency and REM sleep,
as well as an increase in wakefulness (Gillin et al., 1994; Salin-Pascual
et al., 1999; Vazquez et al., 1996; Page et al., 2006). In the present
study, we compared the effects of antidepressive doses of NIC, FLX and
the combination of both drugs on sleep–wake pattern in rats,
according to the forced swim test (Vazquez-Palacios et al., 2004,
2005), with the objective of determining whether the effects of NIC
are similar to those of FLX, a SSRI and currently the most widely-used
antidepressant.

2. Methods

In this study, sleep–wakefulness patterns in rats were monitored
after one day, one week and two weeks of administration, as well as
after the withdrawal of the two-week treatmentwith NIC, FLX and the
combination of FLX plus NIC. Adult maleWistar rats (250–300 g at the
beginning of the experiment) from our vivarium were chronically
implanted with a standard set of electrodes for electroencephalogram
(EEG) and electromyogram (EMG) recording under deep anesthesia
[Ketamine (100 mg/ml): 0.25 ml plus xilacine (20 mg/ml): 0.05 ml
plus acepromazine (0.2 mg/ml) 0.1 ml plus 0.6 ml of saline to obtain a
1 ml cocktail, ip] and aseptic conditions. Once anesthesized, the
animals were injected with xylocaine (2%) in the dorsal part of the
cranium to complete the local anesthesia. All electrodes were then
soldered to the connectors of a plug that was permanently fixed to the
skull with acrylic cement. At the end of the surgical procedure, each
animal received an ip injection of 0.3 ml of penicillin and all
appropriate antiseptic measures were taken to prevent infection. At
that point, the animals were placed individually in transparent plastic
cages (recording chambers) containing sawdust bedding. All animals
were kept in the same sound-attenuated room and maintained on a
12-h alternating light–dark schedule (lights on 0900 h) and at a
controlled temperature (23±1 °C). Food and water were available ad
libitum throughout the study. Following a post-surgical recovery
period of at least 7 days, all animals were habituated for 3 days by
being allowed to move freely around the recording chamber with
their slip rings and cable-connectors attached. EEG and EMG were
recorded continuously for 8 h during the light period (the sleep period
in rats) of the 12-h light/12-h dark cycle, beginning at approximately
0900 h. Animals were randomly assigned to one of the following ex-
perimental groups (n=10): saline control (CON), NIC, FLX and FLX+
NIC. The same CON group was used for all treatments. Sleep
recordings were obtained during 8 h after one day, one week and
two weeks of administration, as well as after withdrawal from the
two-week treatment period (7 days after completing the two-week
treatment). In order to determine the possible effects on the sleep–
wake cycle, four distinct states of vigilance were established, based on
the visual scoring of records according to Takeuchi's (1970) criteria.
The behavioral states of wakefulness (W), slow wave sleep I (SWS I),
slow wave sleep II (SWS II) and REM sleep were scored in successive
10-s epochs. These sleep–wake measures provided the following
dependent variables that were quantified for each 8-h recording
session: total time of sleep–wakefulness stages; their frequency,
duration and latencies; and sleep efficiency (percentage of total sleep
time during the recording period) (Vazquez-Palacios and Velazquez-
Moctezuma, 2000). Brief awakenings (less than 30 s) during SWS I,
SWS II or REM sleep were counted as the total number of awakenings.
Statistical analysis was conducted using Kruskal–Wallis analysis of
variance (ANOVA) and significant sources of variance were identified
using the Dunn post-hoc test. A level of p≤0.05 was considered
significant in all tests.

2.1. Drugs

–(–) Nicotine bitartrate was dissolved in a saline solution, while
FLX–HCL was dissolved in distilled H2O. All drugs were administered
subcutaneously in a volume equivalent to 0.2 ml. Doses were
calculated on mg/kg of salt and prepared fresh each morning. The
dose tested for each drug was as follows: NIC bitartrate at 0.4 mg/kg
body weight/day (0.14 mg/kg body weight/day of nicotine base), and
FLX–HCl at 5 mg/kg body weight/day (4.47 mg/kg body weight/day of
FLX base). NIC was injected 10 min prior to sleep recording, while the
FLX–HCl injections were given 30 min before the start of sleep
recording. The combination of FLX+NIC was administered using the
same doses and at the above mentioned times prior to sleep
recording. The control rats received a 0.9% saline solution as the
vehicle (same volume and route of administration). Both the NIC and
FLX doses were selected based on reports in the literature and our
own previous studies that had demonstrated antidepressive effec-
tiveness in the forced swim test (Detke et al., 1995; Tizabi et al., 1999;
Vazquez-Palacios et al., 2004, 2005).

Also relevant is the fact that no increase of general locomotor
activity has been reported at these doses (Tizabi et al., 1999; Detke
et al., 1995). All animals were treated in strict accordance with both
the NIH Guidelines and Mexico's Official Norms (NOM-062-ZOO-
1999) for the Care and Use of Laboratory Animals.

3. Results

3.1. One day of treatment

Our results indicate that NIC induces sleep–wake changes similar
to those found in the FLX group in that it increases wakefulness and
decreases both SWS II and REM sleep. Sleep time decreased in all
experimental treatments as indicated by total sleep time, and sleep
was also less efficient (Fig. 1). With regard to REM sleep latency onset,
a significant increment was observed under all treatments (Fig. 2).
Fig. 1 shows the effects of all treatments on the total time of the
different sleep stages. In the 8-h recording sessions, sleep–wake
patterns after one day of NIC administration were characterized by a
significant increment in the duration of W [+78%] with a consequent
significant decrease in the total time of both SWS II [−50%] and REM
sleep [−63.15%] (Fig. 1A). These changes, induced by one day of NIC
treatment, led to decreased sleep efficiency (Table 1). The greater
amount of time spent in W resulted from an increase in the average
duration of each episode (Table 1), while the reduction in both SWS II
[−52.18%] and REM sleep [−69.84%] occurred due to a significant
reduction in the number of episodes. NIC also induced a significant
lengthening of REM sleep latency onset (Fig. 2A).

One day of FLX administration induced effects in the sleep–wake
architecture similar to those of NIC during the entire recording period
(Fig. 1A). Overall amounts of W increased following of one day of FLX
treatment [+56.69%] with a concomitant decrease in SWS II
[−33.83%] and REM sleep [−61.47%]. These changes led to decreased
sleep efficiency (Table 1). One day of FLX administration increased the
total duration of W through an increase in the duration of each
episode (Table 1), though in this case the number of episodes
remained unchanged. In contrast to W, the duration of SWS II
diminished due to a reduction in the number of episodes, though the
duration of each single episode increased. Overall amounts of REM
sleep also decreased via a reduced number of episodes, but the
average duration of each REM sleep episode remained unchanged
(Table 1). With regard to REM sleep latency onset, a significant



Fig. 1. Effects of nicotine (NIC; 0.4 mg/kg/day sc), fluoxetine (FLX; 5 mg/kg/day sc), and the combination of both drugs (FLX+NIC) administered one day (A), one week (B), two
weeks (C) and 7 days after the end of two-week treatment (D), on the total time of each vigilance stage: wakefulness (W), slowwave sleep I (SWS I), slowwave sleep II (SWS II), and
REM sleep (SREM). Control (CON), fluoxetine (FLX), nicotine (NIC), and fluoxetine plus nicotine (FLX+NIC). For each group n=10; bars represent the mean values (±S.E.M.) in
minutes. Kruskal–Wallis ANOVA followed by the Dunn test. ⁎pb0.05; ⁎⁎pb0.01 vs. Control (CON).
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increment [+52.17 min and +49.72%] was observed under one day
of FLX administration (Fig. 2A).

Time spent in W was also greater [+46.89%] after one day of the
combined FLX+NIC administration, which led to a decrease in both
SWS II [−30.74%] and REM sleep [−74.58%] (Fig. 1A). These
alterations led to a decreased sleep efficiency similar to that observed
in the FLX group. The increased time spent in Wwas due to a 45% rise
in the number of episodes of that type (Table 1). The reduction of SWS
II was due to a decrease in the number of episodes [−46.26%] despite
the increased duration of each one [+47.23%]. Similarly, reductions in
the time spent in REM sleep occurred due to a significant decrease in
the number of episodes [−77.16%]. FLX+NIC administration also
induced a significant increase in REM sleep latency onset [+85.3 min
and 81.3%] (Fig. 2A).

3.2. One week of treatment

Fig. 1B displays the effects of all one-week treatments on the
amount of the different vigilance states in the rats. Statistical analysis
showed that one week of treatment with NIC in intact rats decreased
total REM sleep duration [−54.21%] via a marked reduction in the
number of episodes [−69.37%] (Table 1). The total duration of SWS II
also declined significantly [−39.86%] because of a lower number of
episodes [−46.25%], while the total duration of W increased [66.76%]
due to a significant rise of the number of episodes [+52%], which led
to a reduction in sleep efficiency (Table 1). NIC administration also
induced a significant extension of REM sleep latency onset
[+76.65 min and +73.06%] (Fig. 2B).

One week of treatment with FLX also induced comparable effects
to those of NIC in sleep–wake architecture (Fig. 1B), as it resulted in
greater W duration [+56.33%]. In addition, a reduction in both SWS II
[−30.33%] and REM sleep [−85.39%] produced a decline in sleep
efficiency. The increase of W time was due to a slight rise in the
duration of each episode. whereas the reductions in SWS II and REM
sleep were due to a lower number of episodes (Table 1). FLX
treatment induced a significant lengthening of REM sleep latency
onset (Fig. 2B).

Overall amounts of W also increased after one week of the
combined FLX+NIC treatment [+81.8%] (Fig. 1B). In contrast to the
NIC and FLX regimens, this effect was due to a significant increase in
the average duration of each episode [+63.45%]. The increase of W
induced by one week of FLX+NIC treatment occurred through a
greater decrease in both SWS II [−50.33%] and REM sleep [−86.13%].
With regard to the reduction of SWS II, this effect was due to a
significant reduction in the number of episodes [−52.11%] (Table 1).
FLX+NIC treatment also induced a significant lengthening of REM
sleep latency onset [+142.36 min and +135.69%] (Fig. 2B).

3.3. Two weeks of treatment

The sleep–wake pattern after two weeks of NIC treatment was
characterized by a significant increase in the duration ofW [+37.58%]



Fig. 2. Effects of nicotine (NIC; 0.4 mg/kg/day sc), fluoxetine (FLX; 5 mg/kg/day sc), and the combination of both drugs (FLX+NIC) administered one day (A), one week (B), two
weeks (C) and 7 days after the end of two-week treatment (D), on sleep latencies: wakefulness (W), slow wave sleep I (SWS I), slow wave sleep II (SWS II), and REM sleep (SREM).
Control (CON), fluoxetine (FLX), nicotine (NIC), and fluoxetine plus nicotine (FLX+NIC). For each group n=10; bars represent the mean values (±S.E.M.) in minutes. Kruskal–
Wallis ANOVA followed by the Dunn test. ⁎pb0.05; ⁎⁎pb0.01 vs. Control (CON).
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with a consequent significant decrease in the total time of both SWS II
[−23.21%] and REM sleep [−56.99%] (Fig.1C), changes that led to a
decreased sleep efficiency [−18.74%] (Table 2). Two weeks of NIC
administration increased total W duration via an increase in the
number of episodes [+28%] (Table 2). SWS II duration diminished
due to a reduction in the number of episodes [37.32%], despite the
increased duration of each one [+51.3%]. NIC treatment also induced
a significant increase in REM sleep latency onset [+86.21] (Fig. 2C).
Twoweeks of treatment with FLX induced effects comparable to those
Table 1
Comparison of the difference between baseline and post-treatment values of several sleep
fluoxetine (FLX) or fluoxetine plus nicotine (F+N) treatment. Values are presented as mea

One day of treatment

CON NIC FLX F+

Wake
Duration (min) 10.7±0.8 15.8±1.3⁎ 16.0±1.5⁎ 13
Number of episodes 15.2±1.0 15.8±1.0 18.0±0.8 18
Number of awakenings 2.6±1.6 10.0±2.5⁎⁎ 11.2±2.6⁎⁎ 12

Sleep
Total time (min) 314.5±10.7 235.3±12.7⁎⁎ 196.2±21.7⁎⁎ 231
Sleep efficiency (%) 66.8±2.74 49.0±2.6⁎ 40.8±4.5⁎⁎ 48

Slow wave sleep I
Duration (min) 2.1±0.1 2.8±0.1⁎⁎ 2.9±0.2⁎⁎ 2
Number of episodes 22.7±1.3 17.6±1.4⁎ 17.8±0.9⁎ 17

Slow wave sleep II
Duration (min) 6.8±0.4 9.7±0.5 9.5±0.9* 11
Number of episodes 32.1±1.7 18.4±0.8⁎⁎ 22.4±1.8⁎ 17

REM sleep
Duration (min) 2.2±0.1 2.3±0.2 2.4±0.2 2
Number of episodes 25.7±1.6 9.5±0.9⁎ 7.8±1.8⁎⁎ 5
of NIC in sleep–wake architecture (Fig. 1C), and resulted in an
increased duration of W [+36.3%]. In addition, a reduction in both
SWS II [−30.33%] and REM sleep [−85.39%] produced a decline in
sleep efficiency [−16.44%]. The increased W time was due to a
significant increase in the number of episodes [+51.3%], whereas the
reduction in SWS II and REM sleep was caused by a reduction in the
number of episodes [−39.78% and −64.12%, respectively] (Table 2).
Overall amounts of W also increased after administration of the
combination of FLX+NIC [+88%] (Fig. 1C), an effect brought about by
parameters assessed in animals after one day and after one week of nicotine (NIC),
n±S.E.M. (n=10). ⁎pb0.05; ⁎⁎pb0.01 vs. CON.

One week of treatment

N CON NIC FLX F+N

.6±0.9 12.6±1.6 14.3±1.5 16.3±1.6⁎ 17.5±1.4⁎

.4±0.9⁎ 15.2±1.0 18.0±1.1⁎ 17.1±1.4 17.0±1.0

.5±3.5⁎⁎ 1.9±0.4 12±3.6⁎⁎ 14.2±4.6⁎⁎ 16.5±4.4⁎⁎

.3±16.1⁎ 335.4±9.3 230.7±16.5⁎ 206.6±26.3⁎⁎ 190.1±12.1⁎⁎

.2±3.3⁎ 69.8±1.9 48.0±3.4⁎ 44.6±4.3⁎ 39.6±2.5⁎

.6±0.1⁎ 2.0±0.1 3.0±0.1⁎ 2.6±0.2⁎ 2.7±0.1⁎

.5±1.3⁎ 19.0±1.4 16.1±1.2 19.0±1.0 18.3±1.1

.2±0.8⁎ 7.9±0.4 12.5±1.4⁎ 8.8±1.0 8.6±0.5⁎

.8±1.6⁎⁎ 28.0±1.9 14.4±1.3⁎⁎ 17.3±1.5⁎ 15.7±1.7⁎⁎

.4±0.4 2.9±0.2 2.3±0.2 1.8±0.1 2.4±0.3

.8±1.8⁎⁎ 25.0±2.6 3.6±1.6⁎ 7.8±1.8⁎ 2.77±1.0⁎⁎



Table 2
Comparison of the difference between baseline and post-treatment values of several sleep parameters assessed in animals after two weeks and one week after the withdrawal of
treatment with nicotine (NIC), fluoxetine (FLX) or fluoxetine plus nicotine (F+N) treatment. Values are presented as mean±S.E.M. (n=10). ⁎pb0.05; ⁎⁎pb0.01 vs. CON.

Two weeks of treatment Withdrawal of treatment

CON NIC FLX F+N CON NIC FLX F+N

Wake
Duration (min) 13.0±1.3 13.0±1.5 13.7±1.9 19.4±2.6⁎⁎ 12.9±1.3 12.4±1.5 14.4±2.8 13.9±2.3
Number of episodes 12.0±1.1 18.0±0.9⁎ 16.8±1.5⁎ 16.0±1.0 12.0±1.1 14.4±1.4 18.6±2.7⁎ 17.0±2.5
Number of awakenings 3.2±0.8 17.0±2.5⁎⁎ 18.8±2.6⁎⁎ 19.5±5.5⁎⁎ 2.6±1.6 10.6±4.8⁎⁎ 14.5±2.9⁎⁎ 17.5±3.5⁎⁎

Sleep
Total time (min) 335.0±8.2 262.8±17.0⁎ 260.6±23.7⁎ 180.3±26.5⁎ 335.0±8.2 320.2±3.6 287.1±3.1⁎ 287.1±3.1⁎
Sleep efficiency (%) 69.8±1.7 54.7±3.5 54.3±5.0 37.5±5.5⁎ 69.8±1.7 65.7±0.8* 59.1±0.5⁎ 61.3±1.1⁎

Slow wave sleep I
Duration (min) 2.0±0.1 2.5±0.1⁎ 2.5±0.1⁎ 2.6±0.1⁎ 2.0±0.1 2.1±0.1 2.7±0.1⁎ 2.5±0.1⁎
Number of episodes 18.2±1.3 18.5±2.0 18.1±1.5 15.7±1.8⁎ 18.2±1.3 22.0±2.5 19.7±2.4 19.5±2.4

Slow wave sleep II
Duration (min) 7.1±0.3 11.1±1.4⁎⁎ 10.4±1.3⁎ 9.9±0.8⁎ 8.0±0.3 8.0±0.8 8.5±0.7 8.3±0.8
Number of episodes 29.8±1.5 19.0±2.1⁎⁎ 20.1±2.8⁎ 13.0±1.9⁎⁎ 27.8±1.5 28.2±1.9 24.33±1.4⁎ 25.3±1.5⁎

REM sleep
Duration (min) 2.7±0.2 2.2±0.2 1.9±0.2 2.4±0.4 2.7±0.2 2.4±0.1 2.2±0.1 2.33±0.1
Number of episodes 24.7±1.6 9.22±3.1⁎⁎ 12.3±2.4⁎ 3.4±1.0⁎⁎ 24.7±1.6 23.0±1.6 14.0±0.5⁎⁎ 18.2±2.7
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a significant increase in the average duration of each episode
[+80.22%] (Table 2). The increase of W induced by two weeks of
FLX+NIC treatment occurred through a decrease of both SWS II
[−47.66%; F(3,36)=8.5, pb0.03; Dunn pb0.01] and REM sleep
[−82.8%] (Fig. 1C). Concerning the reduction of SWS II, this effect
was due to a significant reduction in the number of episodes
[−62.67%]. FLX+NIC treatment also induced a significant lengthen-
ing of REM sleep latency onset [+142.36 min and +135.69%]
(Fig. 2C).

3.4. Withdrawal of treatment

After withdrawal of all treatments (7 days after the last in-
jection of each substance), only NIC induced residual effects on
sleep–wake patterns, as the withdrawal of that treatment was
characterized by a significant increase in the duration of W
[+37.58%] with a consequent significant decrease in the total
time of both SWS II [−23.21%] and REM sleep [−56.99%] (Fig. 1D),
changes that resulted in a decreased sleep efficiency [−18.74%]
(Table 2). NIC treatment also induced a significant increase in REM
sleep latency onset [+86.21 min and +82.17%] (Fig. 2D).

4. Discussion

When compared to the control animals (CON), all treatments
introduced changes in the sleep–wake architecture of intact rats. The
changes observed in our study in an 8-h sleep recording period during
one day, one week and twoweeks of NIC treatment are very similar to
those observed in the rats that received FLX, in that both drugs led to a
reduction in sleep efficiency as a consequence of a decrease in the
amount of both SWS II and REM sleep and an increase in W. These
effects were similar in magnitude for all groups. One important
finding of this study, then, is the marked effect on REM sleep. The
systemic administration of NIC, FLX and FLX+NIC decreased the
amount of REM sleep and increased REM sleep latency onset, a well-
known effect of classical antidepressants (Wilson and Argyropoulos,
2005). Reductions in the amount of REM sleep and increases in REM
sleep latency onset were seen after the application of antidepressants
(Mayers and Baldwin, 2005; Wilson and Argyropoulos, 2005). The
increase in W can be explained by an activational influence on the
pontine brain stem (Hobson et al., 1998). Accordingly, it has been
shown that FLX and other SSRIs have alerting effects on sleep (Beasley
et al., 1992; Maudhuit et al., 1994; Dorsey et al., 1996).

In the present study, the suppression of REM sleep coupled with an
increased REM latency induced by FLX confirms previous findings
from studies with normal volunteers (Nicholson and Pascoe, 1988;
Vasar et al., 1994), patients with depression (Von Bardeleben et al.,
1989; Trivedi et al., 1999), and rats (Pastel and Fernstrom, 1987;
Bakalian and Fernstrom, 1990). Recent studies have corroborated the
finding that in rats both the systemic injection and direct infusion of
FLX into the laterodorsal tegmental nucleus (LDT) or the medial
pontine reticular formation (mRTF) significantly reduced REM sleep
and the number of REMperiods, whereas REM sleep latency onset was
augmented (Monti and Jantos, 2005). In addition, FLX resulted in a
decrease in sleep efficiency. Clearly, the serotonin (5-HT) reuptake
inhibition of FLX is expected to increase 5-HT availability at all
postsynaptic 5-HT receptors (Kreiss and Lucki, 1995; Rutter et al.,
1994); thus, FLX may induce the suppression of REM sleep by
inhibiting the brainstem structures involved in promoting and
inducing it (Monti and Jantos, 2005). Overall, these data would
explain the FLX-induced increment in REM sleep latency onset and
the decrease in REM sleep duration, a mechanism that would also
explain the elevated level of arousal expressed in an overall increase
of the duration of W.

The REM sleep suppressant effect induced by an acute dose of NIC
is similar to that reported in rats (Salin-Pascual et al., 1999) and
normal volunteers (Gillin et al., 1994; Davila et al., 1994; Vazquez et
al., 1996; Page et al., 2006), but different from the effect produced
when it is injected directly into the brain stem. As mentioned above, a
microinjection of NIC into mRTF increases REM sleep in cats
(Velazquez-Moctezuma et al., 1990). This discrepancy may be related
to species differences, route of administration, dosage, duration of
treatment or the different nAChR subtypes involved. Diversity in the
receptor function is evident among the different subtypes, with
variability in the degree of membrane ion channel activation that
occurs in response to NIC binding (Dajas-Bailador and Wonnacott,
2004; Picciotto et al., 2000). Moreover, the degree of receptor
desensitization, which occurs with the continued presence of NIC,
also varies among different receptor subtypes (Wooltorton et al.,
2003; Alkondon and Albuquerque, 2005). In rats, it has been shown
that the effects of NIC on sleep can be prevented by pretreatment with
the nicotinic-receptor antagonist mecamylamine (Salin-Pascual et al.,
1999), which suggests that NIC initiates its action on sleep by binding
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to nAChRs. While the sleep–wake effects of FLX may be explained by
its effect on the serotonergic system, those that result from NIC
administration may also be due to an enhancement of the activity of
several systems of neurotransmitters that may play a role in the
arousal process (for example, acetylcholine, dopamine and 5-HT)
(Dani and Bertrand, 2007). However, with respect to arousing
properties (Hubbard and Gohd, 1975; McNamara et al., 1990), NIC
has been linked to wake-promoting systems (Boutrel and Koob, 2004;
Lena et al., 2004). The authors and other researchers have suggested
that such actions allow acetylcholine and nicotine to enhance wake-
fulness by inhibiting sleep-promoting systems while at the same time
facilitating other wake-promoting systems (Saint-Mleux et al., 2004;
Boutrel and Koob, 2004; Lena et al., 2004). Since these neurotrans-
mitter systems are primarily involved in the regulation of sleep and
wakefulness, it is believed that they represent common neurobiolog-
ical substrates that underlie impairments in regulating mood and
sleep–wakefulness patterns (Adrien, 2002). Further studies are
necessary to directly establish the precise mechanism through
which NIC increases the state of wakefulness.

On the other hand, there is evidence for a bidirectional relationship
in the interaction of the nicotinic and serotonergic systems (for
review, see Seth et al., 2002). For example, nicotinic receptors are
expressed on the cell bodies of the 5-HT raphe neurons, and nicotine
has been shown to increase 5-HT release on hippocampus, dorsal
raphe nucleus and hypothalamus (Sher, 2004; Mihailescu et al., 1998;
Seth et al., 2002). The NIC-induced 5-HT release was much higher
during the decrease in firing rates, indicating that NIC might influence
the 5-HT1A autoreceptors of the 5-HT neurons. Because NIC alters
serotonergic transmission, it has been suggested that both acute and
chronic NIC treatments modulate the expression of 5-HT1A receptors
located in certain cortical and limbic regions (Kenny et al., 2001)
implicated in the etiology of depression (Savitz et al., 2009) and REM
sleep (Monti and Monti, 2000). All these effects lead us to suggest
that NIC-induced 5-HT release may alter the postsynaptic sensitivity
to 5-HT (Kenny et al., 2001; Rasmussen and Czachura, 1997) by
desensitizing the 5-HT1A autoreceptors (Chaput et al., 1990; Le Poul
et al., 1995, 2000) and that this mechanism could be mediating the
sleep–wake and mood effects associated with NIC. It is now known
that most treatments currently employed as antidepressants improve
serotonergic transmission (for example, FLX) (Blier and de Montigny,
1999; Lesch, 2000). Both FLX and NIC enhance 5-HT transmission
across 5-HT synapses (Kreiss and Lucki, 1995; Rutter et al., 1994;
Mihailescu et al., 1998), but through different mechanisms. In earlier
behavioral studies we have suggested that the possible mechanism
through which NIC exerts its antidepressant-like effects could be
related to the stimulation of neuronal nicotinic receptors in the
serotonergic system (Vazquez-Palacios et al., 2004, 2005). These
antidepressant-like effects of NIC treatment were equivalent in both
intact rats and in an animal model of depression (Vazquez-Palacios
et al., 2004, 2005).

However, the lack of synergy observed when FLX was co-
administered with NIC (FLX+NIC group) may be related to
pharmacological profile differences, dosage, or the involvement of
different mechanisms. The potencies and rates with which NIC
induces the persistent functional inactivation of diverse nAChR
subtypes may also be related to the sequences and degrees of NIC's
effects on nAChRs and their subsequent effects on the sleep–wake
cycle (Wooltorton et al., 2003; Alkondon and Albuquerque, 2005).

In summary, the results of the present study indicate that one day,
one week and two weeks of systemic administration of FLX and NIC
increased wakefulness and reduced both SWS II and REM sleep in rats.
Moreover, these treatments also induced increases in REM sleep onset
latency. These findings suggest that the antidepressant action of NIC
could be mediated by both its effects on REM sleep and its arousing
properties. Because NIC has been suggested as a potential treatment
for depression, findings of that substance have similar properties to
FLX on architecture of sleep, may be relevant to its potential as an
antidepressive agent.
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